Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 176: 88-93, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28442393

RESUMO

Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies.


Assuntos
Neoplasias da Mama/metabolismo , Prolactina/metabolismo , Receptores de Progesterona/metabolismo , Receptores da Prolactina/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Feminino , Humanos , Receptor Cross-Talk , Transdução de Sinais
2.
J Mol Endocrinol ; 56(3): R99-R114, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26831511

RESUMO

Steroid hormone receptors (SRs) are heavily posttranslationally modified by the reversible addition of a variety of molecular moieties, including phosphorylation, acetylation, methylation, SUMOylation, and ubiquitination. These rapid and dynamic modifications may be combinatorial and interact (i.e. may be sequential, complement, or oppose each other), creating a vast array of uniquely modified receptor subspecies that allow for diverse receptor behaviors that enable highly sensitive and context-dependent hormone action. For example, in response to hormone or growth factor membrane-initiated signaling events, posttranslational modifications (PTMs) to SRs alter protein-protein interactions that govern the complex process of promoter or gene-set selection coupled to transcriptional repression or activation. Unique phosphorylation events allow SRs to associate or disassociate with specific cofactors that may include pioneer factors and other tethering partners, which specify the resulting transcriptome and ultimately change cell fate. The impact of PTMs on SR action is particularly profound in the context of breast tumorigenesis, in which frequent alterations in growth factor-initiated signaling pathways occur early and act as drivers of breast cancer progression toward endocrine resistance. In this article, with primary focus on breast cancer relevance, we review the mechanisms by which PTMs, including reversible phosphorylation events, regulate the closely related SRs, glucocorticoid receptor and progesterone receptor, allowing for precise biological responses to ever-changing hormonal stimuli.


Assuntos
Neoplasias da Mama/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Isoformas de Proteínas , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Receptores de Progesterona/química , Receptores de Progesterona/genética , Transdução de Sinais , Estresse Fisiológico , Relação Estrutura-Atividade
3.
Cell Rep ; 11(6): 977-989, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25937286

RESUMO

Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Meristema/citologia , Análise de Célula Única/métodos , Células-Tronco/citologia , Telômero/metabolismo , Proteínas de Arabidopsis/metabolismo , Compartimento Celular , Diferenciação Celular , Divisão Celular , Hibridização in Situ Fluorescente , Meristema/metabolismo , Mutação/genética , Nicho de Células-Tronco , Células-Tronco/metabolismo , Telomerase/metabolismo
4.
Plant Cell ; 25(4): 1343-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23572541

RESUMO

Telomeres protect chromosome ends from being recognized as DNA damage, and they facilitate the complete replication of linear chromosomes. CST [for CTC1(Cdc13)/STN1/TEN1] is a trimeric chromosome end binding complex implicated in both aspects of telomere function. Here, we characterize TEN1 in the flowering plant Arabidopsis thaliana. We report that TEN1 (for telomeric pathways in association with Stn1, which stands for suppressor of cdc thirteen) is encoded by a previously characterized gene, MERISTEM DISORGANIZATION1 (MDO1). A point mutation in MDO1, mdo1-1/ten1-3 (G77E), triggers stem cell differentiation and death as well as a constitutive DNA damage response. We provide biochemical and genetic evidence that ten1-3 is likely to be a null mutation. As with ctc1 and stn1 null mutants, telomere tracts in ten1-3 are shorter and more heterogeneous than the wild type. Mutants also exhibit frequent telomere fusions, increased single-strand telomeric DNA, and telomeric circles. However, unlike stn1 or ctc1 mutants, telomerase enzyme activity is elevated in ten1-3 mutants due to an increase in repeat addition processivity. In addition, TEN1 is detected at a significantly smaller fraction of telomeres than CTC1. These data indicate that TEN1 is critical for telomere stability and also plays an unexpected role in modulating telomerase enzyme activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica de Plantas , Immunoblotting , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Mutação , Plantas Geneticamente Modificadas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Telomerase/genética , Telômero/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...